Identification of Genes Required for the Function of Non-Race-Specific mlo Resistance to Powdery Mildew in Barley.
نویسندگان
چکیده
Recessive alleles (mlo) of the Mlo locus in barley mediate a broad, non-race-specific resistance reaction to the powdery mildew fungus Erysiphe graminis f sp hordei. A mutational approach was used to identify genes that are required for the function of mlo. Six susceptible M2 individuals were isolated after inoculation with the fungal isolate K1 from chemically mutagenized seed carrying the mlo-5 allele. Susceptibility in each of these individuals is due to monogenic, recessively inherited mutations in loci unlinked to mlo. The mutants identify two unlinked complementation groups, designated Ror1 and Ror2 (required for mlo-specified resistance). Both Ror genes are required for the function of different tested mlo alleles and for mlo function after challenge with different isolates of E. g. f sp hordei. A quantitative cytological time course analysis revealed that the host cell penetration efficiency in the mutants is intermediate compared with mlo-resistant and Mlo-susceptible genotypes. Ror1 and Ror2 mutants could be differentiated from each other by the same criterion. The spontaneous formation of cell wall appositions in mlo plants, a subcellular structure believed to represent part of the mlo defense, is suppressed in mlo/ror genotypes. In contrast, accumulation of major structural components in the appositions is seemingly unaltered. We conclude that there is a regulatory function for the Ror genes in mlo-specified resistance and propose a model in which the Mlo wild-type allele functions as a negative regulator and the Ror genes act as positive regulators of a non-race-specific resistance response.
منابع مشابه
mlo-based powdery mildew immunity: silver bullet or simply non-host resistance?
SUMMARY Durability and effectiveness against all genetic variants of a microbial species are hallmarks of so-called plant 'non-host' resistance. Highly effective immunity of monocotyledonous barley against the fungal powdery mildew pathogen, which is conferred by loss-of-function mutant alleles of the barley Mlo locus, likewise is a durable and broad-spectrum type of resistance. Although this w...
متن کاملAllele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance
Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an as...
متن کاملSerpentine plant MLO proteins as entry portals for powdery mildew fungi.
In the dicotyledonous plant species Arabidopsis and the monocot barley, presence of specific isoforms of the family of heptahelical plasma membrane-localized MLO proteins is required for successful host-cell invasion by ascomycete powdery mildew fungi. Absence of these MLO proteins, either caused by natural polymorphisms or induced lesions in the respective Mlo genes, results in failure of fung...
متن کاملChemical suppressors of mlo-mediated powdery mildew resistance
Loss-of-function of barley mildew locus o (Mlo) confers durable broad-spectrum penetration resistance to the barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). Given the importance of mlo mutants in agriculture, surprisingly few molecular components have been identified to be required for this type of resistance in barley. With the aim to identify novel cellular factors cont...
متن کاملmlo‐based powdery mildew resistance in hexaploid bread wheat generated by a non‐transgenic TILLING approach
Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Ta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 8 1 شماره
صفحات -
تاریخ انتشار 1996